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Abstract. A scattering equation has been developed by considering power-law correlation and
geometrical details of fractals, and then used to describe the scattering behaviour of circular
and sharply bounded two-dimensional random fractal patterns generated with the dielectric
breakdown model (DBM). It is shown that the scattering equation may, on the whole, reasonably
describe the ideal coherent scattering profiles calculated by starting from the coordinates of all
scatterers that make up the model fractals, while an excellent fit to the scattering profiles requires
taking into account the additional contribution from the correlation of local density fluctuations.
A scaling invariance properly between the scattering intensity profiles from fractals of different
sizes has also been manifested and discussed.

1. Introduction

Over the past decades, fractal phenomena ubiquitously present in a variety of physical,
chemical, and biological systems, which display fractal features such as dentritic growth,
diffusion-limited aggregation, dielectric breakdown, viscous fingering, electrochemical
deposition, growth of bacterial colonies, etc, have experienced extensive study of both
theoretical and experimental aspects [1, 2]. In order to experimentally identify and recognize
fractal features of a specific structure or pattern occurring in nature or the laboratory, several
useful methods and techniques have been developed. From the box-counting principle,
for instance, the imaging analysis of aggregate structures under the electron microscope
(usually digitized and computerized) has been used for directly detecting their fractal nature
[3]. Nevertheless, the coherent scattering of x-rays, neutrons or laser light by fractal
objects seems to be one of the most convenient and effective tools for evaluating the
structural parameters or correlationships of fractals. Such a technique is based on the
fact that fractal objects usually possess a density correlation characterized by power law
c(r) ∼ rDf−3f (r/ξ), with f (r/ξ) being called the scaling function. As a consequence,
quasi-power-lawI (q) ∼ q−Df scattering intensity profiles emerge in the ‘fractal regime’ of
scattering space [4–6] and the corresponding fractal dimensionDf can be directly read out
from a double-logarithmic plot of the scattering intensity versus the momentum transfer.
For a quantitative interpretation of the scattering data from real fractal objects, however, the
scaling functionf (r/ξ) usually requires particular considerations for the presence of finite-
size effects arising from the correlation cut-off at a large scale of real fractal aggregates
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or clusters. It seems that Sinhaet al [7] first phenomenologically assumed the function
f (r/ξ) as an exponential exp(−r/ξ) to take into account this finite-size effect with the
parameterξ interpreted as the aggregate size. Also, a function exp[−(r/ξ)2] was raised
instead of exp(−r/ξ) in [8]. It is clearly evident that the advantages of sucha priori setting
of scaling functions allow one to readily establish a mathematic expression of structure
factor for the fitting analyses of scattering data. Several examples using such a scaling
function can be found in the scattering researches on colloidal aggregates of particles
of gold, silica and others [9–11], but it should be noted that a scaling function such as
exp(−r/ξ) is not universal since it only gives a rough structural picture of some boundaries
of fractals, which in reality, as argued in our research concerning the finite-size effect on
the scattering behaviour [12], may show more complications than could be described by a
simple exponential exp(−r/ξ) due to the presence of structural inhomogeneity and diverse
geometrical structures of the boundaries. Therefore, a blind use of a simply preset scaling
function to data-fitting analyses would probably lead to ill evaluated structural parameters
when the correlation function of the fractals does not follow the preset one, even though
sometimes the final fitting could be mathematically well accepted.

In the present work, we report on an investigation of the scattering behaviour of
some circular and sharply bounded 2D fractals generated via computer with the dielectric
breakdown model (DBM). The research consists in, first, working out coherent scattering
intensities by starting from point scatterers of the model fractals, which might be well
regarded as ideal coherent scatterings; secondly, quantitatively interpreting these scattering
data by incorporating circular and sharp boundaries of the model fractals into a scattering
equation built up on the basis of point-scattering theory together with fractal power-law
correlation. It is shown that the scattering equation, in which a scaling function different
from Sinha’s was constructed according to the particulars of the model fractals’ boundaries
and physically well clarified, provides a fairly good fit to those ideal scattering profiles over
the entireq range in the studies. In contrast, the use of scaling function exp(−r/ξ) failed
to give a good enough description when the structural parameters were evaluated with the
right values. It is more interesting that an excellent fit to the ideal scattering profiles can
be achieved when an additional contribution ascribed to the correlation of local fluctuation
of density distribution inside the fractals is taken into account. This research, in fact, by
exemplifying sharply bounded fractals, has proved the importance and the feasibility of
establishing a correct scattering equation to reveal the structural details of real fractals,
which may well be of more complicated boundaries than the present one, such as gradual
transition boundaries characterized by some ‘width’, for instance. Moreover, the present
work suggested an additional contribution to the scattering intensity from the correlation
of local fluctuations of scatterer density distribution. This argument is supposed to deserve
further study and more attention when a detailed description of fractal aggregates by the
scattering technique is involved.

2. Dielectric breakdown modelling and scattering of 2D fractals

The 2D fractal patterns used in the present modelling study were generated through a
standard growth procedure of the DBM [11], in which the Laplace equation∇2U = 0 is
numerically simulated on a 2D point lattice with unit space between any two neighbouring
points in longitudinal and latitudinal directions. At the beginning, a seed ‘particle’ is placed
at a lattice point chosen as the centre of the lattice, from which a circumference of radius
R = 200 units is assumed. The boundary conditions are set such thatUout = 1 on the outer
circumference andUin = 0 at the inner occupied sites. During the pattern’s growth process,
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the growth probability at theith perimeter bond is chosen aspi = ∇Ui/6jI∇UjI for every
single-step growth. Successively, such a growth mechanism allows a fractal pattern to grow
up to a desired size. Figure 1 illustrates a typical 6000-point fractal pattern generated by
the above procedure.

Figure 1. A typical 2D fractal pattern generated via DBM, marked with concentrical circles
representative of the off-trimming traces with different radiiR = 20, 30, 40 and 50 in lattice
units.

Over ten such fractals of about 6000 points in each, an average density–density
correlation functionc(r) ∼ 〈ρ(r ′)ρ(r ′ + r)〉 was found to be of a power law:c(r) ∼ r−0.3,
with the mean fractal dimensionalityDf = 1.7. The circular and sharply bounded fractal
patterns for modelling scatterings were then obtained by peripherally trimming fresh fractals
at distancesR = 20, 30, 40 and 50 (in lattice units) from the centre.

According to the point-scatterer diffraction theory, as in the case of a 3D point assembly,
the elastical scattering intensity from a 2D point system hit by a beam of electromagnetic
radiation (x-rays, light) or neutrons, normal to the pattern plane, will be given by

Ieu(q) = If (q)I 2Np[1+ 1/Np66 exp(iq · rij )] (1)

where Np is the total number of point scatterers;If (q)I 2 is usually called the form
factor corresponding to the intensity scattered by one individual scatterer;q stands for
the momentum-transfer’s component parallel to the pattern plane. Its modulusIqI =
2π sin(2θ)/λ, with θ being the angle between the momentum transfer and the plane, and
λ the wavelength of the incident beam. After taking an angular average of (1) due to the
random radian orientation of planar point assemblies, which are considered parallel to one
another, a structure factor can be obtained:

S(q) = Ieu(q)/If (q)I 2Np = [1+ 1/Np66J0(qrij )] (2)
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whereJ0(qrij ) is the zero-order Bessel function of the first kind, andrij refers to the distance
from the ith to thej th scatterer.

The factorS(q) is actually a structure-related function ofq, depending on the details
of the distribution of scatterers in the plane. By using (2), the simulation of ideal coherent
scatterings from circularly trimmed fractals of various radii has been performed. As an
example, the averaged scattering profile over ten model fractals of radiusR = 30 is plotted
by squares in figure 2. For the fractals of radiiR = 20, 40 and 50, the corresponding
scattering profiles can be seen in figure 4, below.

Figure 2. A comparison between the scattering intensity profiles: squares, calculated directly by
(2); dotted line, given by (7) together with (6) and (8); solid line, by (7) together with (6), (8),
(10) and (11); dot–dashed line, by (7) with8(r)K(r) replaced by scaling function exp(−r/ξ).

3. The scattering equation for planar fractals

From the point of view of practical structure analysis, it is evidently unfeasible to define a
fractal object of random structure as exactly as in the case of crystalline matter. Owing to its
dilation symmetry, however, a fractal structure is expected to be statistically characterized
and described by a set of structural parameters. In order to achieve this goal by starting
from the scatterings by fractals instead of their scatterers’ coordinates, one needs to set up a
scattering equation in terms of the density correlation and geometrical details of the fractals.

According to the point-scattering theory, as in the case of a 3D system, the scattering
intensity for a 2D point-scatterer assembly is given by

Ieu(q) = If (q)I 2
∫ ∫ +∞
−∞

ρ(u)ρ(u′)σ (u)σ (u′) exp(−iq · u) exp(iq · u′) du du′ (3)

whereIf (q)I 2 has the same meaning as in (1);ρ(u) is the scatterer density distribution
function consistently defined in the whole plane for an infinite scattering object; andσ(u)
refers to the shape function used to characterize the shape, size, and boundary structure of
a finite-sized scatterer assembly.
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By settingu′ = u − r and noting that the above integration with respect tou may
be effectively performed only in the overlapping region ofσ(u) andσ(u+ r), (3) can be
rewritten as

Ieu(q) = If (q)I 2Np

∫ +∞
−∞

8(r)K(r)g(r) exp(−iq · r) dr (4)

where8(r) = 80(r)/A, with 80(r) being the convolution square of the shape function
σ(u), A the total surface area occupied by the fractal pattern;Np = A〈ρ(u)〉A (hereafter the
angular brackets stand for an average:〈∗〉 = (∫ ∗ du/A); g(r) = 〈ρ(u)ρ(u+r)〉A/〈ρ(u)〉A,
the ensemble average correlation function of infinite fractals; andK(r) is a newly introduced
function we call the inhomogeneity function with the following definition:

K(r) = 〈ρ(u)ρ(u+ r)〉A′(r)/〈ρ(u)ρ(u+ r)〉A (5)

whereA′(r) refers to the overlapping region of the functionsσ(u) and σ(u + r). The
function K(r) accounts for the influences of density inhomogeneity present within the
fractals on their scattering intensity. It can be deduced thatK(r) is equivalent to the ratio
〈ρ(u)〉A′(r)/〈ρ(u)〉A by viewing the fact that every point that belongs to the fractal object
has the same type of environment when considered as the origin. So it can be numerically
evaluated by using the power-law density function for fractals:

K(r) = Df /[2πRDf8(r)]
∫
A′(r)

rDf−2 dA. (6)

For the same reason as mentioned in section 2, an angular average of (4) gives rise to
a general structure factor for random 2D fractals:

S(q) = 2π
∫ ∞

0
8(r)K(r)g(r)rJ0(qr) dr (7)

whereJ0(qr) is also the zero-order Bessel function of the first kind. By substituting the
general correlation function for 2D fractalsg(r) = κrDf−2 into (7) and noticing that8(r),
the reduced convolution square of shape function for a disc of radiusR, is given by [14]

8(r) =
{

2/π [cos−1(r/2R)− (r/2R)
√

1− (r/2R)2] r < 2R

0 r > 2R
(8)

a scattering equation for circular and sharply bounded fractals can be completely defined
from (7).

4. Discussions

4.1. The scaling function and scattering profiles

By comparing (7) with the usual form of structure factor used in the literature [7], it is easy
to note that the produce of8(r) andK(r) is exactly in the place of the scaling function
f (r/ξ). Such an interesting comparison allows one to derive from (7) a complete definition
of the scaling function for finite-sized fractals. Physically, one can see that the scaling
function f (r/ξ) comprises two parts: (i) the convolution square of shape function8(r),
only determined by the geometrical form of fractals, and (ii) the inhomogeneity function
K(r), as a function of fractal dimensionality, reflecting the structural inhomogeneity inside
the disordered fractals and assuming unity for any 2D aggregates withDf = 2. At this
point, it is clearly evident that for disordered fractal systems, the scaling functionf (r/ξ)

is not always as simple as exp(−r/ξ) or something unfathomable but a function entirely
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dependent on the shape, size, and structural inhomogeneity of the fractals. It can be well
mathematically constructed by considering fractal correlations and geometrical details of
the fractals concerned. Undoubtedly, this way will lead one to achieving the disclosure of
boundary structures of finite-sized fractals beside their fractal correlation properties.

By using (7) together with (6) and (8), a scattering profile for the model fractal patterns
of radiusR = 30 has been calculated, whereNp andDf are evaluated with the statistical
averages over ten model fractals of the same radiusR. As shown in figure 2, the dotted
line indicates the corresponding scattering profile, accompanied by the one given by (2)
in squares. It can be seen that both curves show non-linear scattering profiles with a few
rises and falls in the middle part ofq, and fairly well coincide with each other, especially
in the lower and higherq ranges. In sharp contrast, the scattering intensity calculated by
using a simple exponential scaling functionf (r/ξ) in place of8(r)K(r) and evaluatingξ
with a mean radius of gyration of the model fractals shows an almost straight profile in the
intermediateq range, as shown in figure 2 (dot–dashed line), lying much farther from the
square line than the dotted one. Obviously, the use of scaling function exp(−r/ξ) tends to
yield a scattering profile quite close to the ideal straight line in a bi-logarithmic plot, which is
often expected and stressed in some literature. However, here the case is absolutely not the
same as described by scaling function exp(−r/ξ) because of the large differences between
the sharply cut edge and the boundary exponentially diffusing into infinity. Therefore, it can
be concluded that whether or not a linear scattering regime could be found for real fractal
structures is also strongly related to the particulars of scaling function8(r)K(r), not only
to power-law correlation functiong(r).

4.2. The additional contribution from the local density fluctuations

Although the scattering profiles derived from (7) and (2) can be in fairly good coincidence,
an evident discrepancy between two scattering curves appears in the intermediateq range,
especially in the first valley region, where the scattering curve given by (2) shows a deeper
sink than the one given by (7). By such a comparison, one may see that the scattering
equation developed in terms of power-law correlation, circular shape, and sharp boundary
conditions can only fairly well describe the scattering behaviour of the model fractals when
the structural parameters involved in it are evaluated with the values from the averaged
fractal structures.

With the purpose of clarifying the factors that may be responsible for such a discrepancy,
the correlation length spectraφ(r) (the population of scatterer pairs of different separation
r) for the model fractals have been calculated both analytically and directly by using
coordinates of the occupied sites in fractals, referred to asφa(r) and φd(r) and plotted
in figure 3. For analytical calculation of correlation length spectra, the following formula
adopted from (7) was used:

φa(r) = 2π8(r)K(r)g(r)r. (9)

As illustrated in figure 3,φd(r) appears like a fluctuating function despite of an average
over ten model fractals, showing a fluctuation of symmetrically enhanced amplitudes about
the intermediate length scale, whereas the analytical spectrumφa(r) has a continuous and
smooth profile. Moreover, it can be seen thatφa(r) shows an evident deviation from the
mean value ofφd(r), which was obtained by multiple smoothing of theφd(r) curve and
might be considered as the correct statistical description of the fluctuating correlation length
spectrum. The presence of the difference betweenφa(r) and the mean value ofφd(r) seems
to indicate that some other factors should be taken into account in order to find a perfect
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Figure 3. A comparison between the correlation length spectraφ(r/R): squares,φd(r/R)
averaged over ten fractals; dotted line,φa(r/R) obtained from analytical calculation by (9)
combined with (6) and (8); solid line,φa(r/R) modified by (9) together with (6), (8), (10) and
(11), exactly coinciding with the mean value ofφd(r/R), obtained after multiple smoothing of
φd(r/R).

fit between two scattering profiles in addition to the power-law correlation and geometrical
details such as shape, size, and boundary state.

By carefully examining each term in (3), one may find that a random fractal structure
actually possesses a density distribution that cannot be mathematically continuous and
analysable everywhere and should always exhibit some degree of local fluctuations. Taking
such a factor into account, therefore, the genuine density function is supposed to be written
asρ(r) = ρ0(r)+ δρ(r), with ρ0(r) being the mean value ofρ(r), andδρ(r) the random
deviation fromρ0(r). Accordingly, such a consideration will have the function product
K(r)g(r) in (7, 9) re-expressed as

K(r)g(r) = 〈ρ
0(u)ρ0(u+ r)〉A′(r)〈ρ0(u)ρ0(u+ r)〉A
〈ρ0(u)ρ0(u+ r)〉A〈ρ0(u)〉A

[
1+ 〈δρ(u)δρ(u+ r)〉A′(r)〈ρ0(u)ρ0(u+ r)〉A

]
. (10)

On the right-hand side of (10), the term prior to the square brackets is actually the usual
contribution ofK(r)g(r) and can be obtained by analytical calculation with the help of (6)
and the usual power-law correlation function. As can be seen inside the brackets, however,
a non-zero modifying factor is added when the correlation of local density fluctuations is
not zero. Obviously, such an additional contribution is expected to be universally present
in random fractals because no reason can be found to make sure that the local density
fluctuations are not correlated everywhere in random fractals. By comparingφa(r) with the
mean value ofφd(r), the modifying factor in (10) has been numerically simulated for the
model fractals used and can be expressed approximately by

〈δρ(u)δρ(u+ r)〉A′(r)
〈ρ0(u)ρ0(u+ r)〉A = 0.18 sin2(rπ/2R). (11)

where an amplitude of 0.18 reflects the degrees of local density fluctuations and their
correlation. By using (10,11) forK(r)g(r), a modified correlation length spectrumφ′a(r)
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has been derived from (9). It yields almost the same curve as the mean value ofφd(r) does
with no visible discrepancy between them, as shown in figure 3. What is more interesting,
as shown in figure 2, the scattering profile (solid line) calculated by using (7) withK(r)g(r)

evaluated by (10,11) gives an excellent fit to the ideal experimental scattering profile over
the wholeq range in the studies.

4.3. General scaling invariance

As seen in (6,8), the scaling function8(r)K(r) has its variables that can be well reduced
by the fractal sizeR. This property allows (7) to be transformed into

S(q∗) = 2πκRDf
∫ ∞

0
8(r∗)K(r∗)r∗Df−1J0(q

∗r∗) dr∗ (12)

where the dimensionless quantitiesq∗ = q/R andr∗ = r/R. Now if we let∫ ∞
0
8(r∗)K(r∗)x∗Df−1J0(q

∗r∗) dx∗ = S0(q
∗,Df )

and note the normalization condition,S(q∗ = 0) = Np, the total number of the
scatterers involved in a given fractal pattern, which varies as a function of the sizeR

and dimensionalityDf of the fractals,Np = 2πκRDf /Df , it follows that

S(q∗)/Np = S0(q
∗,Df )/S0(0,Df ). (13)

This equation, being of great importance for exploring the scattering behaviour of fractal
structures, indicates that theq∗ dependence of reduced scattering intensitiesS(q∗)/Np is
solely determined by dimensionalityDf , disregarding the size of the fractals concerned,
if they have the analogous boundary conditions and follow the same correlationship. It
is interesting to note that this property has been excellently demonstrated through forming
scattering profiles for the model fractals of different radii:R = 20, 30, 40 and 50. The
ideal coherent scattering profiles for these model fractals are illustrated in figure 4, where
the inset box shows their collapse. It is clear that no matter how large the fractals are, their
reduced intensity curves are well coincident with one another. Physically, one can conclude
that this scaling property results from the self-similarity of the fractals, and also expect that
it is helpful to monitor the dynamic growth of fractal aggregates. If a growing aggregate
maintains its boundary structure, shape, and interparticle correlationship during its growth
process, its scattering profiles measured at different time intervals are supposed to abide by
(13). Otherwise, any deviation from (13) may imply some changes in boundary structure,
shape or correlationship between the particles.

5. Conclusions

In summary, the investigation of scattering behaviour by 2D model fractals has shown
that the ideal scattering profiles calculated by starting from the exact coordinates of each
scatterer inside the fractals can be fairly well described by a scattering equation, which is
strictly developed in terms of the point-scattering theory and power-law correlation, as well
as the boundary structure of the model fractals, when the relevant structural parameters
in the scattering equation are evaluated with the values averaged over ten model fractal
patterns of the same size. In contrast, the description by using scaling function exp(−r/ξ)
is quite poor even though the correct values of structure parameters are adopted. Moreover,
by taking into account the additional contribution to the scattering behaviour from the
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Figure 4. Scattering profilesS(q) for the circularly trimmed fractals with different radii. The
inset shows their collapse after scaling.

correlation of local density fluctuations inside the random fractals, the remaining discrepancy
between the ideal scattering profile and the scattering equation in the intermediateq range
can be almost completely eliminated. This significant result manifests that a particular
scattering intensity profile from real fractals is not only governed by the power law, regular
inhomogeneity, and their geometrical details, but also impacted to a certain degree by the
correlation from local density fluctuations. In addition, a scaling invariance between the
scattering intensity profiles for the fractals, which possess the same fractal correlation and
analogous boundary structures, but different sizes, has been revealed and demonstrated.
This interesting scattering property appears to be useful for monitoring the real growth of
fractal aggregates.
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